Part Number Hot Search : 
10R3SS MJF45H11 CA411 MAX4080 SCSM05 15536 FTD7010 ZM85C5V6
Product Description
Full Text Search
 

To Download AD704AR-16 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 a
FEATURES High DC Precision 75 V Max Offset Voltage 1 V/ C Max Offset Voltage Drift 150 pA Max Input Bias Current 0.2 pA/ C Typical I B Drift Low Noise 0.5 V p-p Typical Noise, 0.1 Hz to 10 Hz Low Power 600 A Max Supply Current per Amplifier MIL-STD-883B Processing Available Available in Tape and Reel in Accordance with EIA-481A Standard Dual Version: AD706 APPLICATIONS Industrial/Process Controls Weigh Scales ECG/EKG Instrumentation Low Frequency Active Filters
Quad Picoampere Input Current Bipolar Op Amp AD704
CONNECTION DIAGRAMS 14-Lead Plastic DIP (N) 14-Lead CerDIP (Q) Packages
OUTPUT -IN +IN +VS +IN -IN OUTPUT
1 2 3 4 5 6 7
14
16-Lead SOIC (R) Package
1 2 3 4 5 6 7 8
OUTPUT OUTPUT -IN +IN -VS +IN -IN
16
OUTPUT -IN +IN -VS +IN -IN OUTPUT NC
1
4
13 12
-IN +IN +VS +IN -IN
1
4
15 14
AD704
(TOP VIEW)
11 10
AD704
(TOP VIEW)
13 12
2
3
9 8
2
3
11 10 9
OUTPUT OUTPUT
NC
NC = NO CONNECT
20-Terminal LCC (E) Package
OUT1 OUT4 -IN1 NC -IN4
3
2
1
20
19
PRODUCT DESCRIPTION
The AD704 is a quad, low power bipolar op amp that has the low input bias current of a BiFET amplifier but which offers a significantly lower IB drift over temperature. It utilizes super-beta bipolar input transistors to achieve picoampere input bias current levels (similar to FET input amplifiers at room temperature), while its IB typically only increases by 5x at 125C (unlike a BiFET amp, for which IB doubles every 10C resulting in a 1000x increase at 125C). Furthermore, the AD704 achieves 75 V offset voltage and low noise characteristics of a precision bipolar input op amp. Since it has only 1/20 the input bias current of an AD OP07, the AD704 does not require the commonly used "balancing" resistor. Furthermore, the current noise is 1/5 that of the AD OP07 which makes the AD704 usable with much higher source impedances. At 1/6 the supply current (per amplifier) of the AD OP07, the AD704 is better suited for today's higher density circuit boards and battery-powered applications. The AD704 is an excellent choice for use in low frequency active filters in 12- and 14-bit data acquisition systems, in precision instrumentation, and as a high quality integrator. The AD704 is internally compensated for unity gain and is available in five performance grades. The AD704J and AD704K are rated over the commercial temperature range of 0C to 70C. The AD704A is rated over the industrial temperature of -40C to +85C. The AD704T is rated over the military temperature range of -55C to +125C and is available processed to MIL-STD-883B, Rev. C.
100
+IN1 4 NC 5 +VS 6 NC 7 +IN2 8 AMP 1 AMP 4
18 +IN4 17 NC 16 -VS 15 NC 14 +IN3
AD704
AMP 2 AMP 3
9
-IN2
10
OUT2
11
NC
12
OUT3
13
-IN3
NC = NO CONNECT
10
TYPICAL I B - nA
TYPICAL JFET AMP
1
0.1
AD704T
0.01 -55 +25 TEMPERATURE - C +125
Figure 1. Input Bias Current Over Temperature
REV. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 (c) Analog Devices, Inc., 2002
AD704-SPECIFICATIONS (@ T = 25 C, V
A
CM
= 0 V, and
15 V dc, unless otherwise noted.)
AD704K Typ Max 30 50 0.2 132 126 0.3 80 0.2 75 150 1.0 112 108 150 200 200 300 30 0.4 80 80 100 150 200 300 130 200 300 400 110 104 110 106 104 104 110 106 150 150 50 0.4 80 100 AD704T Typ Max 30 80 132 126 0.3 80 1.0 600 700 150 200 400 500 150 250 400 600 200 250 100 150 1.0
Parameters INPUT OFFSET VOLTAGE Initial Offset Offset vs. Temp, Average TC vs. Supply (PSRR) TMIN -TMAX Long-Term Stability INPUT BIAS CURRENT 1 vs. Temp, Average TC TMIN -TMAX INPUT OFFSET CURRENT vs. Temp, Average TC TMIN -TMAX MATCHING CHARACTERISTICS Offset Voltage
Conditions
AD704J/A Min Typ Max 50 100 0.2 132 126 0.3 100 0.3 150 250 1.5
Min
Min
Unit V V V/C dB dB V/month pA pA pA/C pA pA pA pA pA/C pA pA V V pA pA dB dB dB dB dB
TMIN -TMAX VS = 2 to 18 V 100 VS = 2.5 to 18 V 100 VCM = 0 V VCM = 13.5 V VCM = 0 V VCM = 13.5 V VCM = 0 V VCM = 13.5 V VCM = 0 V VCM = 13.5 V
112 108 270 300 300 400
80 0.6 100 100
250 300 300 400 250 400 500 600
TMIN -TMAX Input Bias Current2 TMIN -TMAX Common-Mode Rejection 3 TMIN -TMAX Power Supply Rejection 4 Crosstalk5 FREQUENCY RESPONSE UNITY GAIN Crossover Frequency Slew Rate, Unity Gain Slew Rate INPUT IMPEDANCE Differential Common-Mode INPUT VOLTAGE RANGE Common-Mode Voltage Common-Mode Rejection Ratio INPUT CURRENT NOISE INPUT VOLTAGE NOISE TMIN -TMAX f = 10 Hz RLOAD = 2 k 94 94 94 94 150
G = -1 TMIN -TMAX
0.8 0.15 0.1 40 2 300 2 13.5 14 100 132 98 128 3 50 0.5 17 15 200 150 200 150 2000 1500 1000 1000
0.8 0.15 0.1 40 2 300 2 13.5 14 114 132 108 128 3 50 0.5 17 15 400 300 300 200 2000 1500 1000 1000 2.0 22 400 300 200 100
0.8 0.15 0.1 40 2 300 2 13.5 14 110 132 108 128 3 50 0.5 17 15 2000 1500 1000 1000 2.0 22
MHz V/s V/s M pF G pF V dB dB pA p-p fA/Hz V p-p nV/Hz nV/Hz V/mV V/mV V/mV V/mV
VCM = 13.5 V TMIN -TMAX 0.1 to 10 Hz f = 10 Hz 0.1 to 10 Hz f = 10 Hz f = 1 kHz VO = 12 V RLOAD = 10 k TMIN -TMAX VO = 10 V RLOAD = 2 k TMIN -TMAX
22
OPEN-LOOP GAIN
-2-
REV. C
AD704
Parameters OUTPUT CHARACTERISTICS Voltage Swing Current CAPACITIVE LOAD Drive Capability POWER SUPPLY Rated Performance Operating Range Quiescent Current TMIN -TMAX TRANSISTOR COUNT # of Transistors Conditions RLOAD = 10 k TMIN -TMAX Short Circuit Gain = 1 AD704J/A Min Typ Max Min AD704K Typ Max Min AD704T Typ Max Unit
13
14 15 10,000 15 1.5 1.6 180
13
14 15 10,000 15 1.5 1.6 180
13
14 15 10,000 15 1.5 1.6 180
V mA pF V V mA mA
2.0
18 2.4 2.6
2.0
18 2.4 2.6
2.0
18 2.4 2.6
NOTES 1 Bias current specifications are guaranteed maximum at either input. 2 Input bias current match is the maximum difference between corresponding inputs of all four amplifiers. 3 CMRR match is the difference of VOS/VCM between any two amplifiers, expressed in dB. 4 PSRR match is the difference between VOS/V SUPPLY for any two amplifiers, expressed in dB. 5 See Figure 2a for test circuit. All min and max specifications are guaranteed. Specifications subject to change without notice.
REV. C
-3-
AD704
ABSOLUTE MAXIMUM RATINGS 1
9k 1k +VS 1/4 INPUT* SIGNAL 1k OUTPUT COM 2.5k 0.1 F -VS 1F AD704 PIN 11 0.1 F 1F AD704 PIN 4
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V Internal Power Dissipation (25C) . . . . . . . . . . . . See Note 2 Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VS Differential Input Voltage3 . . . . . . . . . . . . . . . . . . . . . . . 0.7 V Output Short-Circuit Duration (Single Input) . . . . . Indefinite Storage Temperature Range Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65C to +150C N, R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65C to +125C Operating Temperature Range AD704J/K . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0C to 70C AD704A . . . . . . . . . . . . . . . . . . . . . . . . . . . -40C to +85C AD704T . . . . . . . . . . . . . . . . . . . . . . . . . -55C to +125C Lead Temperature Range (Soldering 10 seconds) . . . . . 300C
NOTES 1 Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2 Specification is for device in free air: 14-Lead Plastic Package: JA = 150C/W 14-Lead Cerdip Package: JA = 110C/W 16-Lead SOIC Package: JA = 100C/W 20-Terminal LCC Package: JA = 150C/W 3 The input pins of this amplifier are protected by back-to-back diodes. If the differential voltage exceeds 0.7 volts, external series protection resistors should be added to limit the input current to less than 25 mA.
-
AD704
+
ALL 4 AMPLIFIERS ARE CONNECTED AS SHOWN *THE SIGNAL INPUT (SUCH THAT THE AMPLIFIER'S OUTPUT IS AT MAX AMPLITUDE WITHOUT CLIPPING OR SLEW LIMITING) IS APPLIED TO ONE AMPLIFIER AT A TIME. THE OUTPUTS OF THE OTHER THREE AMPLIFIERS ARE THEN MEASURED FOR CROSSTALK.
Figure 2a. Crosstalk Test Circuit
-80
AMP4
-100
CROSSTALK - dB
AMP2 AMP3
-120
-140
-160 10 100 1k FREQUENCY - Hz 10k 100k
Figure 2b. Crosstalk vs. Frequency
ORDERING GUIDE
Model AD704JN AD704JR AD704JR-/REEL AD704KN* AD704AN* AD704AR AD704AR-REEL AD704SE/883B AD704TQ/883B*
Temperature Range 0C to 70C 0C to 70C 0C to 70C 0C to 70C -40C to +85C -40C to +85C -40C to +85C -55C to +125C -55C to +125C
Package Description Plastic Small Outline (SOIC) Plastic Plastic Small Outline (SOIC) Leadless Ceramic Chip Carrier Cerdip
Package Option N-14 R-16 Tape and Reel N-14 N-14 R-16 Tape and Reel E-20A Q-14
Chips are also available. *Not for new designs; obsolete April 2002.
CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD704 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
WARNING!
ESD SENSITIVE DEVICE
-4-
REV. C
Typical Performance Characteristics-AD704
(@ 25 C, VS =
50
15 V dc, unless otherwise noted.)
50
50
PERCENTAGE OF UNITS
40
40
30
PERCENTAGE OF UNITS
30
PERCENTAGE OF UNITS
40
30
20
20
20
10
10
10
0
-80
-40 0 +40 INPUT OFFSET VOLTAGE -
+80 V
0
-160
-80 0 +80 +160 INPUT BIAS CURRENT - pA
0 -120 -60 0 +60 +120 INPUT OFFSET CURRENT - pA
TPC 1. Typical Distribution of Input Offset Voltage
TPC 2. Typical Distribution of Input Bias Current
TPC 3. Typical Distribution of Input Offset Current
35
INPUT COMMON-MODE VOLTAGE LIMIT - V (REFERRED TO SUPPLY VOLTAGES)
+VS 100
30 25 20 15 10 5 0 1k
0 5 10 15 SUPPLY VOLTAGE - V 20
-1.0 -1.5
OFFSET VOLTAGE DRIFT - V/ C
OUTPUT VOLTAGE - V p-p
-0.5
SOURCE RESISTANCE MAY BE EITHER BALANCED OR UNBALANCED 10
+1.5 +1.0 +0.5 -VS
1.0
10k 100k FREQUENCY - Hz
1M
0.1 1k
10k 100k 1M 10M SOURCE RESISTANCE -
100M
TPC 4. Input Common-Mode Voltage Range vs. Supply Voltage
TPC 5. Large Signal Frequency Response
TPC 6. Offset Voltage Drift vs. Source Resistance
50
4 120
CHANGE IN OFFSET VOLTAGE - V
INPUT BIAS CURRENT - pA
PERCENTAGE OF UNITS
40
3
100 80 POSITIVE IB 60
30
2
20
1
40 NEGATIVE IB 20
10
0
0
-0.8 -0.4 0 +0.4 +0.8 INPUT OFFSET VOLTAGE DRIFT - V/ C
0
1 2 3 4 WARM-UP TIME - Minutes
5
0 -15
-10 -5 0 5 10 COMMON-MODE VOLTAGE - V
15
TPC 7. Typical Distribution of Offset Voltage Drift
TPC 8. Change in Input Offset Voltage vs. Warm-Up Time
TPC 9. Input Bias Current vs. Common-Mode Voltage
REV. C
-5-
AD704
1000
1000
VOLTAGE NOISE - nV/ Hz
100
CURRENT NOISE - fA/ Hz
100
0.5 V
10
10
100 20M
10k
VOUT 1
1 10 100 FREQUENCY - Hz 1000
1
1
10 100 FREQUENCY - Hz
1000
0
5 TIME - Seconds
10
TPC 10. Input Noise Voltage Spectral Density
TPC 11. Input Noise Current Spectral Density
TPC 12. 0.1 Hz to 10 Hz Noise Voltage
500
160 140
180 160 140 VS = 15V 120 100 -PSR 80 +PSR 60 40 1 10 100 1k 10k FREQUENCY - Hz 100k 1M 20 0.1 VS = 15V TA = 25 C
QUIESCENT CURRENT - A
450 CMR - dB
120 100 80 60 40 -55 C 20 0 0.1
400 +125 C +25 C 350
300
0
5 10 15 SUPPLY VOLTAGE - V
20
PSR - dB
1
10 100 1k 10k FREQUENCY - Hz
100k
1M
TPC 13. Quiescent Supply Current vs. Supply Voltage (per Amplifier)
TPC 14. Common-Mode Rejection vs. Frequency
TPC 15. Power Supply Rejection vs. Frequency
10M
OPEN-LOOP VOLTAGE GAIN - dB
140 120 100 PHASE 80 60 40 GAIN 20 0 -20 0.01 0.1
0 30 60 90 120 150 180
OUTPUT VOLTAGE SWING - V (REFERRED TO SUPPLY VOLTAGES)
+VS RL = 10k -0.5 -1.0 -1.5
OPEN-LOOP VOLTAGE GAIN
+25 C 1M +125 C
PHASE SHIFT - Degrees
-55 C
+1.5 +1.0 +0.5 -VS
100k
1
10 LOAD RESISTANCE - k
100
1
10 100 1k 10k 100k 1M 10M FREQUENCY - Hz
0
5 10 15 SUPPLY VOLTAGE - V
20
TPC 16. Open-Loop Gain vs. Load Resistance Over Temperature
TPC 17. Open-Loop Gain and Phase vs. Frequency
TPC 18. Output Voltage Swing vs. Supply Voltage
-6-
REV. C
AD704
1000
RF +VS 0.1 F
100 90
CLOSED-LOOP OUTPUT IMPEDANCE -
100
10 A V = -1000 1 A V = +1 0.1
-
VIN
1/4 VOUT RL 2k 0.1 F CL
10 0%
AD704
+
0.01 I OUT = 1mA 0.001 1 10 100 1k FREQUENCY - Hz 10k 100k
SQUARE WAVE INPUT
2V -VS
50 s
TPC 19. Closed-Loop Output Impedance vs. Frequency
TPC 20a. Unity Gain Follower (For Large Signal Applications, Resistor RF Limits the Current through the Input Protection Diodes)
TPC 20b. Unity Gain Follower Large Signal Pulse Response RF = 10 k, CL = 1,000 pF
10k
5s
100 90 100 90
5s
+VS 0.1 F 10k VIN
- +
1/4 VOUT RL 2.5k 0.1 F CL
AD704
SQUARE WAVE INPUT
10 0%
10 0%
20mV
20mV
-VS
TPC 20c. Unity Gain Follower Small Signal Pulse Response RF = 0 , CL = 100 pF
TPC 20d. Unity Gain Follower Small Signal Pulse Response RF = 0 , CL = 1,000 pF
TPC 21a. Unity Gain Inverter Connection
2V
100 90
50 s
100 90
5s
100 90
5s
10 0%
10 0%
10 0%
20mV
20mV
TPC 21b. Unity Gain Inverter Large Signal Pulse Response, CL = 1,000 pF
TPC 21c. Unity Gain Inverter Small Signal Pulse Response, CL = 100 pF
TPC 21d. Unity Gain Inverter Small Signal Pulse Response, CL = 1,000 pF
REV. C
-7-
AD704
OPTIONAL AC CMRR TRIM R5 2.4k R4 47.5k Ct GAIN TRIM (500k POT) RG R3 6.34k +VS 0.1 F R1 6.34k R2 49.9k Q1 = = C1 4C2 1 R6 C1C2 Q2 = = C3 4C4 1 C3C4
R6 = R7 C1
R8 R8 = R9
AD704
-VIN +VIN
+
-VS
+
R10, 2M R11, 2M R2 2R2 + (FOR R1 = R3, R2 = R4 + R5) R1 RG C5, 0.01 F C6, 0.01 F OPTIONAL BALANCE RESISTOR NETWORKS CAN BE REPLACED WITH A SHORT
INSTRUMENTATION AMPLIFIER GAIN = 1 +
ALL RESISTORS METAL FILM, 1% CAPACITORS C2 AND C4 ARE SOUTHERN ELECTRONICS MPCC, POL YCARBONATE, 5%, 50 VOLT
Figure 3. Gain of 10 Instrumentation Amplifier with Post Filtering
The instrumentation amplifier with post filtering (Figure 3) combines two applications which benefit greatly from the AD704. This circuit achieves low power and dc precision over temperature with a minimum of components. The instrumentation amplifier circuit offers many performance benefits including BiFET level input bias currents, low input offset voltage drift and only 1.2 mA quiescent current. It will operate for gains G 2, and at lower gains it will benefit from the fact that there is no output amplifier offset and noise contribution as encountered in a 3 op amp design. Good low frequency CMRR is achieved even without the optional ac CMRR trim (Figure 4). Table I provides resistance values for 3 common circuit gains. For other gains, use the following equations: R2 = R4 + R5 = 49.9 k
Table I. Resistance Values for Various Gains
Circuit Gain RG (Max Value Bandwidth (G) R1 and R3 of Trim Potentiometer) (-3 dB), Hz
10 100 1,000
160
6.34 k 526 56.2
166 k 16.6 k 1.66 k
GAIN = 10, 0.2V p-p COMMON-MODE INPUT 140
COMMON-MODE REJECTION - dB
120 100 80 TYPICAL MONOLITHIC IN AMP 60 40
CIRCUIT TRIMMED USING CAPACITOR Ct
R1 = R3 =
49.9 k 0.9 G - 1
99.8 k 0.06 G
Max Value of RG =
WITHOUT CAPACITOR Ct 20 0 1 10 100 FREQUENCY - Hz 1k 10k
Ct
1 2 (R3) 5 x 105
Figure 4. Common-Mode Rejection vs. Frequency with and without Capacitor Ct
-8-
-
-
0.1 F
C2
AD704
C4
AD704
+
1/4
AD704
+
DC CMRR TRIM (5k POT)
C3
-
-
1/4
R6 1M
R7 1M
1/4
R8 1M
R9 1M
1/4 OUTPUT
50k 5k 0.5k
REV. C
AD704
The 1 Hz, 4-pole active filter offers dc precision with a minimum of components and cost. The low current noise, IOS, and IB allow the use of 1 M resistors without sacrificing the 1 V/C drift of the AD704. This means lower capacitor values may be used, reducing cost and space. Furthermore, since the AD704's IB is as low as its IOS, over most of the MIL temperature range, most applications do not require the use of the normal balancing resistor (with its stability capacitor). Adding the optional balancing resistor enhances performance at high temperatures, as shown in Figure 5. Table II gives capacitor values for several common low pass responses.
180 120
OFFSET VOLTAGE OF FILTER CIRCUIT (RTI) - V
WITHOUT OPTIONAL BALANCE RESISTOR, R3
60
0 WITH OPTIONAL BALANCE RESISTOR, R3 -60
-120
-180 -40 0 +40 +80 TEMPERATURE - C +120
Figure 5. VOS vs. Temperature Performance of the 1 Hz Filter Circuit
Table II. 1 Hz, 4-Pole Low-Pass Filter Recommended Component Values
Desired Low Pass Response Bessel Butterworth 0.1 dB Chebychev 0.2 dB Chebychev 0.5 dB Chebychev 1.0 dB Chebychev
Section 1 Frequency (Hz) 1.43 1.00 0.648 0.603 0.540 0.492
Q 0.522 0.541 0.619 0.646 0.705 0.785
Section 2 Frequency (Hz) 1.60 1.00 0.948 0.941 0.932 0.925
Q 0.806 1.31 2.18 2.44 2.94 3.56
C1 ( F) 0.116 0.172 0.304 0.341 0.416 0.508
C2 ( F) 0.107 0.147 0.198 0.204 0.209 0.206
C3 ( F) 0.160 0.416 0.733 0.823 1.00 1.23
C4 ( F) 0.0616 0.0609 0.0385 0.0347 0.0290 0.0242
Specified values are for a -3 dB point of 1.0 Hz. For other frequencies, simply scale capacitors C1 through C4 directly; i.e., for 3 Hz Bessel response, C1 = 0.0387 F, C2 = 0.0357 F, C3 = 0.0533 F, C4 = 0.0205 F.
REV. C
-9-
AD704
OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).
14-Lead Cerdip (Q) Package
14-Lead Plastic DIP (N) Package
16-Lead Plastic SO (R) Package
20-Terminal LCC (E) Package
0.100 (2.54) 0.064 (1.63) 0.358 (9.09) 0.342 (8.69) 0.040 (1.02) x 45 REF 3 PLCS
0.028 (0.71) 0.022 (0.56) NO. 1 PIN INDEX 0.050 (1.27) BSC 0.020 (0.51) x 45 REF
Revision History
Location 11/01 Data Sheet changed from REV. B to REV. C. Page
Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Edits to PRODUCT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Deleted METALIZATION PHOTOGRAPH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
-10-
REV. C
-11-
-12-
C00818-0-1/02(C)
PRINTED IN U.S.A.
This datasheet has been download from: www..com Datasheets for electronics components.


▲Up To Search▲   

 
Price & Availability of AD704AR-16

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X